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Diffusion cooling in a magnetic field

R. E. Robson*
Department of Theoretical Physics, Australian National University, Canberra, Australia

~Received 13 July 1999!

Diffusion cooling of electrons in a weakly ionized plasma in the presence of a magnetic field is studied using
the balance equations of momentum transfer theory, well known in ‘‘swarm’’ or test particle analysis. It is
shown that for a cylindrical, axially symmetric system, the electron temperature profile can be ‘‘hollow’’~i.e.,
Te,Ti) and the radial ambipolar electric field can reverse to point inwards under certain conditions, reminis-
cent of observations in plasmas in toroidal devices at much higher temperatures.

PACS number~s!: 52.25.Fi, 51.10.1y, 52.25.Dg, 51.60.1a
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I. INTRODUCTION

The electron component of a weakly ionized gas in c
tact with absorbing boundaries may be significantly coo
for two distinct reasons.

~a! The neutral gas component may act as a selective
ter, depending upon the nature of the momentum tran
cross section, allowing higher energy electrons to diffuse
the walls, leaving the remaining bulk of electrons with
lower average energy.

~b! An ambipolar potential well may be set up, whic
allows only the more energetic electrons to pass to the w
again leaving the remaining electrons with a lower me
energy.

Biondi @1# studied the latter, ambipolar ‘‘diffusion cool
ing’’ effect in the afterglow of a microwave discharge, whi
Parker@2# investigated theoretically the former, free diffu
sion cooling. Rhymes and Crompton found significant fr
diffusion cooling during experimental determination
‘‘swarm’’ diffusion coefficients using the Cavalleri tube@3#,
which prompted further theoretical interest , as outlined i
recent review by the author@4#. Positrons also suffer the
same effect in bounded media@5#.

However, it seems that no investigation of diffusion co
ing has been carried out in the presence of a magnetic fi
Such a study is of interest in its own right, and indeed h
been the main motivating factor behind the present pa
We start with the ‘‘swarm’’ or ‘‘test particle’’ situation, for
the effect of a magnetic field has not been considered eve
this relatively simple case. Moreover, there are potential
vantages in exploring the connection between plasma tr
port theory and swarm analysis, which has made such
nificant advances in the last 20 years~see, e.g., Ref.@7#!.
This is another motivating factor behind the present pap
Having said that, it has to be remarked that the original
petus for the present study was the observation in the
Heliac stellarator device at the Australian National Univ
sity that the electron temperature profile is ‘‘hollow,’’ i.e
the electron component of the plasma is much cooler t
the ions @6#, and the radial ambipolar electric field poin
inward. These are hints that a phenomenon like diffus

*Permanent address: School of Mathematics and Physics, J
Cook University, Cairns 5870, Australia.
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cooling may be operative. However, it is the author’s opini
that it is premature to pursue the hot plasma problem in
toroidal geometry when the simpler problem of diffusio
cooling in a low temperature plasma in cylindrical geome
has yet to be studied. This is the context of the present pa

An accurate kinetic theory must be capable of at le
matching the highly accurate swarm experiments~for ex-
ample, drift velocities are typically measured to 1% or bet
@8#!, which is why so much effort has been devoted to
rigorous solution of Boltzmann’s equation@7#. Another ap-
proach, involving fluid equations generated from Bolt
mann’s equation via ’’momentum transfer’’ theory or som
other ansatz to represent the collision terms, gives trans
properties and relations typically accurate to 10% or so,
has been employed more as an adjunct to elucidate phy
understanding, rather than to furnish quantitative results@9#.
In plasma physics, the situation can be quite different, w
accuracies of 10% more than acceptable. For these rea
we have therefore opted for a fluid equation approach.
deed, this seems to be the first such analysis of diffus
cooling, with or without an applied magnetic field.

In Sec. II, we set up the balance equations resulting fr
momentum transfer theory and discuss closure problems
Sec. III, we apply these equations to the free diffusion co
ing problem, while in Sec. IV, we consider combined am
polar and free diffusion in cylindrical geometry with an ax
ally applied magnetic field. Particular attention is focuss
upon the direction of the ambipolar electric field. The e
phasis is on phenomenology and physical understand
throughout.

II. BALANCE EQUATIONS

A. Approximations and assumptions

Momentum transfer theory has a long history of fruitf
application to semiquantitative descriptions of charged p
ticle transport processes in gases@9#. At the lowest level of
approximation, it consists of assuming collisional trans
terms generated by taking moments of Boltzmann’s equa
for real gases to be of the same mathematicalform as for the
constant collision frequency model. Higher order approxim
tions and an internal accuracy check can be developed
this sense, its pedigree is quite different from many pheno
enological, semiempirical fluid equations, although at fi
sight the mathematical structure may appear similar. Q
remarkably, momentum transfer theory has never been
plied to the study of hot plasmas and Coulomb interactio
es
848 ©2000 The American Physical Society
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PRE 61 849DIFFUSION COOLING IN A MAGNETIC FIELD
and neither have the rigorous techniques of swarm the
such is the gulf that has developed between the study
swarms and plasmas.

The starting point for the present discussion is Bol
mann’s equation for the charged particle phase space d
bution functionf (r ,c,t),

] t f 1c–“ f 1a–]cf 5SJ~ f !, ~1!

where

a5
q

m
~E1c3B! ~2!

is the force per unit mass, and the right hand side repres
the interaction with all other particles in the plasma. At th
stage, we do not need to specify the exact nature of
collision termsJ( f ), although we do observe that if binar
collisions are assumed, then there arise singular integrals
to the long range nature of the Coulomb force which must
‘‘cut off’’ in the usual way to account in anad hocfashion
for screening effects@10#. Otherwise, we note only that in
this discusion all collisions are assumedelastic, though this
approximation can be easily relaxed. Another assumptio
that the neutral component remains in undisturbed eq
brium, with zero average velocity and temperatureT0.

This paper is concerned with both free and ambipolar
fusion effects in a magnetic field. The latter seems to
somewhat problematic, going by remarks in the review
Phelps@11#, contradictory textbook presentations@12,13# and
an entirely different way of looking at things in the eyes
upper atmospheric physicists studying dispersion of ioni
meteor trails@14#. In the present paper we simply assum
that there is no net space charge, requiring

ni5ne[n ~3!

for a plasma containing only one one species of sin
charged ions, and that the divergence of the respective
and electron particle fluxes are equal:

“•G i5“•Ge[“•G. ~4!

While ‘‘pure’’ ambipolar diffusion, whereby the fluxe
themselves are equal, may pertain in the absence of a m
netic field, it cannot do so when a magnetic field is prese
at least for those components perpendicular toB.

B. Balance equations

In what follows, we define the average velocity,

v5^c&, ~5!

the mean energy

K5^ 1
2 mc2&, ~6!

and the energy flux

J5 1
2 nm^c2c&. ~7!
y;
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Equation~1! is multiplied by 1, mc, and 1
2 mc2 in succes-

sion, and integrated over all velocitiesc, to yield the follow-
ing balance equations:

The equation of continuityis the same for both ions an
electrons, viz,

] tn1“•G50. ~8!

The momentum balance equationsfor each charged specie
are

] t~nmeve!1“•nme^cc&1ne~E1ve3B!

52nmenm,enve2nmenm,ei~ve2vi !, ~9!

] t~nmivi !1“•nmi^cc&2ne~E1vi3B!

52nm innm,invi2nmenm,ei~vi2ve!, ~10!

wherenm,en(een) andnm,in(e in) denote momentum transfe
collision frequencies for electron-neutral and ion-neutral c
lisions respectively, andm in is the reduced mass of an io
and a neutral. The collision frequencies are functions of
respective energies in the center of mass,

een5
1
2 me@^c

2&e1^c2&0#, ~11!

e in5 1
2 m in@^c2& i1^c2&0#. ~12!

The electron-ion momentum transfer collision frequency
within the present approximation, given by

nm,ei5nS 2

me
D 1/2

pS e2

4pe0
D 2 ln L

e ie
3/2

, ~13!

where

e ie5 1
2 me@^c

2& i1^c2&e22vi•ve#, ~14!

andL is the familiar screening parameter.
The energy balance equations, on the other hand, are

given by

] t~nKe!1“•Je1neE•ve

52
2me

m0
nnm,enFKe2

3

2
kT0G2

2me

mi
nnm,ei

3FKe2Ki2
1

2
~me2mi !ve•vi G , ~15!

] t~nKi !1“•Ji2neE•vi

52
2m in

mi1m0
nnm,inFKi2

3

2
kT0G2

2me

mi
nnm,ei

3FKi2Ke2
1

2
~mi2me!vi•veG . ~16!

Higher order moment equations would be required to
termine the energy fluxesJ, but these in turn would contain
unknown moments. To obviate this closure problem,
make the ansatz
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850 PRE 61R. E. ROBSON
J5~11g!Kv, ~17!

whereg is an empirical adjustable parameter. That it is re
sonable to assume this form is clear from Eq.~7! and dimen-
sional considerations, and the fact that only the vectorv is
available to construct other vectors. The tensor mome
^cc& also require some specification. For electrons~upon
which we focus below! it is assumed that the velocity distr
bution function is very nearly isotropic, an approximatio
which holds very well in the absence of inelastic collision
and hence

^cc&' 1
3 ^c2&1, ~18!

where 1 is the unit tensor. Finally, where convenient, w
shall work with temperatures rather than energies:

3
2 kT[ 1

2 m~^c2&2v2!. ~19!

We now move on to adapt the above balance equation
particular circumstances.

III. FREE DIFFUSION

A. Electrons

Here we assume that there are no space charge eff
that electron-ion collisions are negligible, and that the el
trons therefore diffuse freely, i.e., we are dealing with t
‘‘swarm’’ problem @7#. The situation may be analyzed from
the equations in Sec. II by settingE50. To simplify matters,
we drop the subscripte, since only electrons are being co
sidered at present. Thus we have

] tn1“•G50, ~20!

] t~nmv!1“•nm^cc&1nev3B52nmnmv, ~21!

] t~ne!1“•J52nne~e2 3
2 T0!, ~22!

where

ne5
2m

m0
nm ~23!

is the collision frequency for energy transfer. As a furth
simplification, we have takenK'e, a good approximation
for electrons, for whichm/m0!1.

We suppose now that the electron swarm has evolved
stage where all average properties are independent of s
and time, although the number densityn5n(r ,t) is still vari-
able. Upon eliminating] tn from the momentum and energ
balance equations using the equation of continuity, we fi

m~^cc&2vv!1nev3B52nmnmv ~24!

and

“•~J2nev!52nne~e2 3
2 kT0!. ~25!

In Eq. ~24!,

m~^cc&2vv![kT'kT1' 2
3 e1 ~26!
-

ts

,

to

ts,
-

r

a
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is the temperature tensor, which to a very good approxim
tion is a scalar, by virtue of Eq.~18!, at least for elastic
collisions.

At this point, we make some general, global observatio
Suppose the electrons and gas are confined in a contain
volumeV bounded by a surfaceS. Upon integrating Eq.~25!
over V and applying Gauss’ theorem, we obtain

e5
3

2
T02

1

Nne
E E

S
~J2nev!•dS, ~27!

whereN represents the total number of electrons inV at time
t. The integral represents the net transport of energy, rela
to the bulk motion, to the bounding surface. Unlessnm in-
creases with energy faster thane, this net transport of energy
is positive, and thene, 3

2 kT0, i.e., we havediffusion cool-
ing. The net flux is exactly zero in the special case wh
nm(e);e, and then the electrons and gas are in therm
equilibrium, e5 3

2 kT0. The parametrization~17! for energy
flux follows these lines:g>0 depending on whethernm var-
ies, respectively, less rapidly thane or in direct proportion to
it. Specific values ofg are given shortly.

In order to calculate the mean energy, we return to
energy balance equation, and substitute for the energy
from Eq. ~17!:

g“•nv52nne~e2 3
2 kT0!. ~28!

The momentum balance equation becomes, with approxi
tion ~26!,

nv5
ne

mnm
v3B2

~2/3!e

mnm
“n, ~29!

or, equivalently,

nv52D•“n2DH3“n, ~30!

where

D[D iB̂B̂1D'~12B̂B̂!, ~31!

D i[
2

3

e

mnm~e!
~32!

is the diffusion coefficient parallel toB, while

D'[D i Y S 11
V2

nm
2 D ~33!

is the diffusion coefficient perpendicular toB, and

DH[D'V/nm ~34!

is the Hall diffusion coefficient. In these expressions,

V5eB/m

is the electron gyrofrequency.
The divergence of the particle fluxG5nv is

“•G52D:““n, ~35!
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PRE 61 851DIFFUSION COOLING IN A MAGNETIC FIELD
and notice that the Hall term does not contribute. The dif
sion equation is found by substituting Eq.~36! into the equa-
tion of continuity ~8!,

] tn5D:““n, ~36!

while the energy balance equation~28! becomes

2geD:““n5nne~e2 3
2 kT0!. ~37!

For definiteness we now assume a cylindrical geome
with B directed along the axis, and for simplicity, a gradie
of n in the radial direction only. Thus

D:““n5D'“
2n. ~38!

Next assume thatn(r ,t)5R(r )T(t) is separable in variables
and thus we have, from the diffusion equation~37!,

“

2n52L2n ~39!

n~r ,t !5R~r !exp~2D't/L2!, ~40!

where R(r ) is the radial component of the solution of th
diffusion equation, andL is a characteristic diffusion length
of the order of the radius of the cylindrical vessel.@N.B.:
Equation~40! generally admits a spectrum of eigenvaluesL,
and it is implicit in what follows that we are dealing with th
fundamental mode, corresponding to the largest membe
this spectrum.# The values ofe ~and hence ofD') can be
found from Eq.~38!, which now takes the form

geD'

neL
2

1e2
3

2
kT050, ~41!

or, equivalently,

2

3

ge2

mnmneL
2~11V2/nm

2 !
1e2

3

2
kT050. ~42!

In general, the collision frequencies are energy depend
and Eq.~43! constitutes a transcendental equation fore. In
the special case of constant collision frequency, howeve
has the analytic solution

e5
3

2
kT0 /~11a!, ~43!

where

a5 1
2 @~114k2!1/221# ~44!

and

k2[
gkT0

mnmneL
2~11V2/nm

2 !
. ~45!

This agrees with the exact result obtained from asympt
solution of the Boltzmann equation@4# with B50 if g5 2

3 .
The corresponding diffusion coefficent is
-

y,
t

of

nt,

it

ic

D'5
2kT0

mnm~11V2/nm
2 !@11~114k2!1/2#

. ~46!

Notice that Eq.~44! is of the same mathematical form as th
field-free case@4#, with an effective diffusion length

Le f f5L~11V2/nm
2 !1/2, ~47!

i.e., the imposition of a fieldB acts to effectively increaseL
and thus reducek.

It is clear from Eq.~44! that the mean energy decreas
further below3

2 kT0 the greatera is, and clearlya increases
with k. Diffusion cooling can therefore be inhibited in
swarm experiment by~a! increasing the size of the vesse
thus increasingL and reducingk; ~b! increasing the neutra
gas pressuren0, thus increasingnm and decreasingk; and~c!
increasingB/n0 and thus also increasingV/n0 andLe f f .

If B50 Eq. ~43! can be solved for other simple model
and agreement obtained with Boltzmann equation results@4#
through an appropriate choice of the parameterg. Thus, for
example, for the constant cross section model, we choosg
5 1

3 . For the case where the cross section is proportiona
speed, andnm;e, we haveg50 and there is no diffusion
cooling. These values ofg may be assumed to also app
whenB is non zero. Thus, by Eq.~43!, there is no diffusion
cooling whennm;e, under any circumstances. However, t
factor 11V2/nm

2 makes analytic solution of Eq.~43! a diffi-
cult proposition in general, even for simple collision mode

In the limiting case of very strong fields, however, su
that V@nm , a quadratic equation resembling that for t
constant collision frequency case holds, regardless of the
ergy dependence of the cross section. The only differenc
that k is replaced byk` , where

k`
2 [

gkT0 /m

2m

m0
V2L2

. ~48!

That is, Eqs.~43! and ~44! hold again, withk→k` , while
the expression for the diffusion coefficient is

D'5
2kT0nm~e!

mV2@11~114k`
2 !1/2#

. ~49!

In this limit the diffusion cooling effect is independent of ga
pressure.

B. Diffusion cooling of ions

In principle, the ion component can also experiience d
fusion cooling, though for practical purposes this may
neglected. Whereas for electrons, the ratiome /m0 is very
small, guaranteeing that the energy transfer frequency~23! is
small compared withnm,en , the corresponding energy tran
fer frequency for ions,@2m in /(mi1m0)#nm,in , is compa-
rable withnm,in , making for good thermal contact betwee
ions and the neutral gas. The parameter correspondingk
@Eq. ~46!# is thus very small, resulting in negligible diffusio
cooling for ions, i.e.,Ti'T0 under all conditions.
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IV. AMBIPOLAR DIFFUSION COOLING

A. Zero magnetic field

Consider first the case whereB50, and electron-ion col-
lisions are negligible. The electron and ion momentum b
ance equations, assuming as before thate andv are indepen-
dent of position and time, and that both electron and
temperatures are isotropic, are

kTe“n1neE52nmenm,enve , ~50!

kTi“n2neE52nm innm,invi . ~51!

If we take the divergence of each equation, add, and re
that the divergence of ion and electron particle fluxes
assumed to equal Eq.~4!, we find

“•G52Da“
2n, ~52!

where

Da[
kTe1kTi

menm,en1m innm,in
~53!

'
kTe1kTi

m innm,in
~54!

5Di~11Te /Ti !, ~55!

and

Di5
kTi

m innm,in
~56!

is the free ion diffusion coefficient. If Eq.~53! is substituted
into the equation of continuity~8!, we obtain

] tn5Da“
2n, ~57!

the usual textbook result. Notice, however, that we did
need to assume to assume equality of the particle fluxes,
equality of their divergences.

Similarly, it can be shown from the momentum balan
equations that

e“•nE52F kTe

menm,en
2

kTi

m innm,in

1

menm,en
1

1

m inn i ,in

G“

2n ~58!

'2kTe“
2n. ~59!

A sufficient ~but not necessary! condition for this to hold is

neE52kTe“n. ~60!

We now turn to the energy balance equation for electro
Thus Eq.~25! becomes

ge“•G1nev•E52nneS e2
3

2
kT0D , ~61!
l-

n

all
e

t
ly

s.

and upon substitution for the ambipolar fieldE and“•nv,
this becomes

2~g1 2
3 !eDa“

2n52nne~e2 3
2 kT0!. ~62!

This has the same structure as the energy balance equ
~38! for the free diffusion cooling case, althoughDa has an
energy dependence different from the free diffussion coe
cient. Moreover, even ifg50, as is the case whennm(e)
;e, there is still diffusion cooling. This is because the a
bipolar space-charge barrier cools no matter what the na
of the collisions. Equation~63! is to be compared with the
empirical equation~9! of Biondi @1#. As before, ions suffer
negligible diffusion cooling because of the good therm
contact with the neutral gas.

B. Nonzero magnetic field

In the presence of a magnetic field, ‘‘pure’’ ambipol
diffusion, in the sense thatall components of ion and elec
tron fluxes are equal, is not possible@12#. However, their
divergencesmust balance as in Eq.~4! in order to maintain
space-charge neutrality. Furthermore, since motion alonB
is unaffected by the magnetic field, we can assume that s
ambipolarity is maintained in that direction, i.e.,

B̂•Gi5B̂•Ge[G i . ~63!

The momentum balance equations are written as

kTe“n1e~nE1Ge3B!52menm,enGe, ~64!

kTi“n2e~nE1Gi3B!52m inm,inGi. ~65!

Taking the dot product of each of these withB̂, and applying
ambipolarity along the magnetic field~64!, gives theB50
result, viz.,

G i52Da,i“ in, ~66!

where

Da,i5Di~11Te /Ti ! ~67!

and

Ei52
kTe

ne
“ in. ~68!

For the transverse direction, no such ambipolarity gen
ally exists, and it is shown in the Appendix that for th
axisymmetric case the equation of continuity is

]n

]t
52“•G52Da,'“'

2 n2Da,i“ i
2n, ~69!

where

Da,'5
Da,i

11r
~70!

and
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r[
e2B2

menm,enm inm,in
. ~71!

In the axisymmetric case, radial~but not azimuthal fluxes!
are indeed ambipolar; that is,

Ge,r5G i ,r 52Da,'

]n

]r
, ~72!

and in that case the transverse~radial! field is also given by

neEr52zkTe

]n

]r
, ~73!

where

z[

12
rTi

Te

11r
. ~74!

The electron energy balance equation is of the same m
ematical form as for the zero field case, and the effect oB
becomes apparent only when explicit expressions are su
tuted for the flux and electric field. Thus we find, assum
uniformity along the axial direction,

2~g1 2
3 z!eDa,'“'

2 n52nne~e2kT0!. ~75!

Apart from the termsz andDa,' this is of a form similar to
the field-free case@Eq. ~63!#. It is interesting to note thatz
can benegative for sufficiently largeB, which raises the
interesting possibility of diffusionheatingresulting from ap-
plication of a magnetic field.

The ions can still be expected to remain in thermal eq
librium with the neutrals, i.e.,Ti'T0.Te , given that the
collision frequency for energy exchange of ions with neutr
is several orders of magnitude larger than the correspon
quantity for electrons. Notice that for sufficiently larg
B, Er can actually change sign, i.e., the ambipolar field c
reverse direction from radially outwards to radially inward
Indeed, ifr@1, Eqs.~74! and ~75! indicate that

neEr'kTi

]n

]r
. ~76!

In terms of the electrostatic potentialf defined byEr5
2]f/]r , this then implies

n~r !; exp„2ef~r !/kTi…. ~77!

That is, the ions are in thermal equilibrium with a Maxwe
Boltzmann distribution.

V. CONCLUDING REMARKS

In this paper we have given a semiquantitative analysi
a weakly ionized plasma undergoing diffusion in a finite ca
ity, both with and without an applied magnetic field, and f
both free and ambipolar diffusion regimes. It was shown t
the energy flux plays a significant role in the theory, but
this level of closure of the equations, it had to be appro
mated in order to make progress. For simplicity, we ha
th-

ti-

i-

s
ng

n
.

f
-

t
t
i-
e

taken cylindrical geometry, withB directed along the axis.
The main results are as follows.~a! The temperature of

the electron component of the plasma can be significa
lowered through the phenomenon of ‘‘diffusion cooling.
~b! The magnetic field may act to inhibit diffusion cooling i
the free diffusion case.~c! For the ambipolar case, the radi
ambipolar electric field can actually reverse sign whenB
becomes large enough.~d! In all cases, the ions remain i
approximate thermal equilibrium with the neutral comp
nent.

Given the essentially phenomenological nature of this
tial investigation, we prefer to leave any numerical calcu
tions for explicit situations to subsequent papers, where
planned to develop a full kinetic theory treatment of diff
sion cooling effects in a magnetic field. For the free diff
sion, ‘‘swarm’’ problem, it can be shown that the resu
presented in Ref.@4# can be generalized in a straightforwa
way, by simply using an effective diffusion length as in E
~48!. However, for the ambipolar situation, simultaneous s
lution of both electron and ion Boltzmann equations is r
quired, and this is a matter of current investigation even
the much simpler case for whichB50. To add to that, in-
elastic collisions need to be included in any serious inve
gation of plasma phenomena, and again it is felt to be be
to leave that to a more comprehensive investigation via
merical solution of Boltzmann equation.

Finally, to try to make contact with the hot toroida
plasma problem, the initial motivating force behind the cu
rent investigation, requires yet another step up in sophist
tion. All that is being pointed out here is that the diffusio
cooling phenomenon has certain qualititative similarit
with what has been observed in experiment@6# ~‘‘hollow’’
electron temperature profile, radial ambipolar field revers
direction! without trying to claim in any way that it isthe
explanation.
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APPENDIX: AXISYMMETRIC CASE

For the sake of completeness, and because the pic
presented in even standard textbooks is by no means cle
consistent, we give a brief outline of the derivation of Eq
~72! and ~73! from first principles.

Consider a cylindrical plasma, with an axial magne
field B which defines thez axis of a system of cylindrica
coordinates (r ,u,z). We have in mind an axially symmetri
case, where the density is independent of both the azimu
angle u and the longitudinal coordinatez, so that thatn
5n(r ). In addition, the azimuthal component of the amb
polar fieldEu50.

The equations of motion for electrons and ions, resolv
into radial and azimuthal components are

kTe

]n

]r
1e~nEr1Ge,uB!52menm,enGe,r ~A1!
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2eGe,rB52menm,enGe,u , ~A2!

kTi

]n

]r
2e~nEr1G i ,uB!52m inm,inG i ,r ~A3!

eG i ,rB52m inm,enG i ,u . ~A4!

Eliminating Ge,u andG i ,u in these equations then gives

kTe

]n

]r
1enEr52S menm,en1

e2B2

menm,en
DGe,r , ~A5!

kTi

]n

]r
2enEr52S m inm,in1

e2B2

m inm,in
DG i ,r . ~A6!

We now assume that ambipolarity pertains in the rad
direction, i.e.,
ys
.

k-

m

l

G i ,r5Ge,r[G r . ~A7!

@Note, however, that althoughG i ,uÞGe,u , the equality of the
divergences of the particle fluxes, Eq.~4!, still holds.# Add-
ing Eqs.~A5! and~A6! and neglecting terms of orderme /mi
gives, for the particle flux,

G r52
kTi1kTe

m inm,in1
e2B2

menm,en

]n

]r
, ~A8!

which is effectively Eq.~72!. Subtracting Eqs.~A5! and~A6!
similarly leads to Eq.~73! for the ambipolar electric field.
@1# M. Biondi, Phys. Rev.93, 1136~1954!.
@2# J. H. Parker, Phys. Rev.139, A1792 ~1965!.
@3# T. Rhymes and R. W. Crompton, Phys. Rev. A12, 776~1975!;

Aust. J. Phys.28, 675 ~1975!.
@4# R. E. Robson, Aust. J. Phys.50, 577 ~1997!. For earlier work

on explicit numerical calculations, see R. E. Robson, Ph
Rev. A 13, 1536~1976!; R. E. Robson and A. Prytz, Aust. J
Phys.46, 465 ~1993!.

@5# W. Brandt and R. Arista, Phys. Rev. A19, 2317~1979!.
@6# M. G. Shats, C. A. Michael, D. L. Rudakov, and B. D. Blac

well, Phys. Plasmas5, 2390~1998!.
@7# R. E. Robson, M. Hildebrandt, and B. Schmidt, Nucl. Instru

Methods Phys. Res. A394, 74 ~1997!.
.

.

@8# L. G. H. Huxley and R. W. Crompton,The Diffusion and Drift
of Electrons in Gases~Wiley, New York, 1974!.

@9# E. A. Mason and E. W. McDaniel,Transport Properties of
Ions in Gases~Wiley, New York, 1988!.

@10# D. C. Montgomery and D. A. Tidman,Plasma Kinetic Theory
~McGraw-Hill, New York, 1964!.

@11# A. V. Phelps, J. Res. Natl. Inst. Stand. Technol.95, 407
~1990!.

@12# K. Nishikawa and M. Wakatani,Plasma Physics~Springer,
Berlin, 1994!.

@13# N. A. Krall and A. W. Trivelpiece,Principles of Plasma Phys-
ics ~McGraw-Hill, New York, 1973!.

@14# W. Jones, Planet. Space Sci.39, 1283~1991!.


